本发明公开了一种利用二维相关光谱分析土壤纳米胶体与镉的相互作用的方法,涉及土壤化学领域,其主要步骤为将待提取土壤经风干研磨过筛超声离心最后冷冻干燥等一系列步骤先得到土壤纳米胶体,配置一定浓度的土壤纳米胶体溶液与一系列浓度梯度的镉溶液充分反应,分别测定混合后溶液的荧光光谱和冷冻干燥后的红外光谱,利用二维相关光谱分析土壤纳米胶体与镉的相互作用,提高信号分辨率,得到一维光谱无法观察到的信息。
1.一种利用二维相关光谱分析土壤纳米胶体与镉的相互作用的方法,其特征在于,包括以下步骤:
(1)土壤纳米胶体的提取:将待提取土壤风干后研磨过筛,加入超纯水超声分散并离心处理,最后冷冻干燥得到土壤纳米胶体固体;
(2)样品溶液的制备:利用步骤(1)获得的土壤纳米胶体制备土壤纳米胶体溶液,并配置一系列浓度梯度的镉离子溶液,调节二者混合溶液pH=7,充分混匀24h后得到待测溶液;
(3)荧光光谱的采集:取一部分待测溶液,采用荧光分光光度仪采集同步荧光信号,每个样本采集3次,分别得到土壤纳米胶体与不同浓度梯度镉溶液作用下的同步荧光光谱数据;
(4)傅里叶红外光谱的采集:剩余的待测溶液冷冻干燥后,采用傅里叶红外光谱仪采集红外光谱数据,每个样本采集3次,分别得到土壤纳米胶体与不同浓度梯度镉溶液作用下的红外光谱数据;
(5)二维相关光谱分析:基于步骤(3)得到的样品的荧光光谱和步骤(4)得到的近红外光谱信息,使用2D shige软件将数据转换成适用于二维相关光谱分析的新光谱矩阵,利用Origin 9.0软件绘制同步荧光和红外光谱的同步/异步二维相关光谱;
荧光的异步二维相关光谱提供了土壤胶体活性组分与镉结合反应的顺序关系,交叉峰(362,385)和(380,460)均呈正值,表明强度变化顺序为:362 nm类富里酸组分> 460 nm类腐殖酸组分> 280 nm类蛋白质组分;在1048 cm−1处由多糖的C−O引起的伸缩振动的峰值下降最为明显,利用顺序排列的规则,通过土壤纳米胶体结合镉后结构变化遵循下列顺序:多糖 C−O > 醚类 > 芳香νC = C,说明土壤胶体与镉的亲水性结合位点多于疏水性位点;交叉峰(300 nm, 1048 cm-1)和(410 nm, 1620 cm-1)的峰值都为负,而在1040 cm−1多糖νC−O和1620 cm−1苯环νC=C和300 nm交叉峰变化最显著,表明土壤胶体的多糖组分和苯环类是的类富里酸成分中主要的荧光分子,这些荧光基团和表面官能团参与了土壤胶体和镉之间的相互作用。
2.根据权利要求1所述的方法,其特征在于,所述步骤(1)中土壤纳米胶体的粒径分布在10.33 nm - 90.13 nm之间,平均粒径为29.95 nm。
3.根据权利要求1所述的方法,其特征在于,所述步骤(2)待测溶液中,土壤纳米胶体浓度为10 mg/L,镉离子浓度范围为0 - 160 μM/L。
4.根据权利要求1所述的方法,其特征在于,所述步骤(3)中用LS-55型荧光分光光度仪采集同步荧光信号,激发波长为220 nm – 500 nm,Δλ = 10 nm,扫描速度为1200 nm/min。
5.根据权利要求1所述的方法,其特征在于,所述步骤(4)用Bruker Tensor 27型傅里叶红外光谱仪采集近红外光谱信号,采用吸收模式,扫描范围为400 cm-1到4000 cm-1之间,分辨率为4 cm-1,每个样品平均扫描32次。
技术领域
[0001]本发明涉及土壤化学领域,特别涉及一种利用二维相关光谱分析土壤纳米胶体与镉的相互作用的方法。
背景技术
[0002]纳米胶体是环境中一种高度分散的纳米量级多相不均匀体系,由分散相和连续相两种不同状态的物质组成,又称纳米胶状分散体或混合物。研究表明,土壤纳米胶体可吸纳养分,参与地球元素循环,同时相比于大颗粒土壤胶体粒子,纳米胶体具有比表面积大、尺寸小的特点,易通过与环境中的污染物发生相互作用从而影响其在环境中的迁移转化过程,如重金属镉、铬、铅等。有研究表明,某些地区当前受镉污染的土壤面积,已达到总耕地面积的1/6。因此,有必要研究天然土壤纳米胶体与镉相互作用的机理。
[0003]当前用于土壤纳米胶体与金属相互作用特性的方法包括尺寸排阻色谱、三维荧光结合平行因子分析、平衡透析法等,考虑到土壤纳米胶体本身成分的复杂性,土壤纳米胶体与金属结合特性的研究仍具有挑战性,二维相关光谱是探索两个不同光谱变量之间关系的动态特征的有力工具,能够提供有关结构变化的方向和次序信息,可以用于分辨重叠峰,较之于一维光谱,更适于探究复杂化合物的相互作用机制。
发明内容
[0004]本发明的目的在于提供一种利用二维相关光谱分析土壤纳米胶体与镉的相互作用的方法。
[0005]具体的,本发明的技术方案是一种利用二维相关光谱分析土壤纳米胶体的方法,包括以下步骤:
[0006](1)将待提取土壤风干后研磨过筛,加入超纯水超声分散并离心处理,最后冷冻干燥得到土壤纳米胶体固体。
[0007](2)利用所提取的土壤纳米胶体固体制备土壤纳米胶体溶液,并配置一系列浓度梯度的镉离子溶液,调节二者混合溶液pH=7,充分混匀24h后得到待测溶液。
[0008](3)取一部分待测溶液,采用荧光分光光度仪采集同步荧光信号,每个样本采集3次,分别得到不同浓度梯度镉溶液下的同步荧光光谱数据。
[0009](4)剩余的待测溶液冷冻干燥后,采用傅里叶红外光谱仪采集近红外光谱数据,每个样本采集3次,分别得到不同浓度梯度镉溶液下的近红外光谱数据。
[0010](5)基于步骤(3)得到的样品的荧光光谱和步骤(4)得到的近红外光谱信息,使用2D shige软件将数据转换成适用于二维相关光谱分析的新光谱矩阵,利用Origin 9.0软件绘制同步荧光和红外光谱的同步/异步二维相关光谱,根据交叉峰的正负和相应波长对应的结构,得出土壤纳米胶体和镉的相互作用机制。
[0011]进一步,所述土壤纳米胶体呈团聚体的形态,单个粒子尺寸均在100nm以下。
[0012]进一步,所述土壤纳米胶体粒径分布在10.33nm-90.13nm之间,平均粒径为29.95nm。
[0013]进一步,所述待测溶液中土壤纳米胶体浓度为10mg/L,镉离子浓度范围为0-160μM/L。
[0014]进一步,所述步骤(3)中,同步荧光信号采集采用LS-55型荧光分光光度仪,激发波长为220nm-500nm,Δλ=10nm,扫描速度为1200nm/min。
[0015]进一步,所述步骤(4)中,近红外光谱信号采集采用Bruker Tensor 27型红外光谱仪,选择吸收模式,扫描范围为400cm-1到4000cm-1之间,分辨率为4cm-1,每个样品平均扫描32次。
[0016]本发明具有显著进步:
[0017]1.能快速有效地确定土壤纳米胶体与镉相互作用的物质类型和结构变化。
[0018]2.相比于一维光谱,二维相关光谱分析可以克服峰重叠的干扰,使得光谱特征更为明显,具有更高的分辨率和更丰富的信息量。
附图说明
[0019]图1是本发明方法的流程原理图;
[0020]图2是土壤纳米胶体和镉作用后在220-500nm区域内的同步(a)和异步(b)荧光二维相关光谱。
[0021]图3是土壤纳米胶体和镉作用后在750-1750cm-1区域内的同步(a)和异步(b)红外光谱二维相关光谱。
[0022]图4土壤胶体和镉作用后的荧光-红外光谱同步(a)和异步(b)二维相关光谱。
具体实施方式
[0023]以下结合附图和具体实施例来对本发明作进一步的说明。
[0024]本发明的实施例选取黄壤,采自安徽安庆某水稻田。
[0025]参见附图1,本发明利用二维相关光谱分析土壤纳米胶体与镉的相互作用的方法包括以下步骤:
[0026](1)将待提取土壤风干后研磨过筛,加入超纯水超声分散并离心处理,最后冷冻干燥得到土壤纳米胶体固体。
[0027](2)样品溶液的制备:利用步骤(1)获得的土壤纳米胶体制备10mg/L土壤纳米胶体溶液,并配置0-160μM/L系列浓度梯度的镉离子溶液,调节二者混合溶液pH=7,充分混匀24h后得到待测溶液,溶液最终体积为25ml;
[0028](3)荧光光谱的采集:取5ml待测溶液,采用荧光分光光度仪采集同步荧光信号,激发波长为220nm–500nm,Δλ=10nm,扫描速度为1200nm/min。每个样本采集3次,分别得到镉溶液浓度为0μm,1μm,2μm,5μm,10μm,20μm,40μm,60μm,80μm,100μm,120μm,160μm下的同步荧光光谱数据;
[0029](4)红外光谱的采集:剩余的待测溶液冷冻干燥后,采用近红外光谱仪采集近红外光谱数据,选择吸收模式,扫描范围为400cm-1到4000cm-1之间,分辨率为4cm-1,每个样品平均扫描32次。每个样本采集3次,分别得到镉溶液浓度为0μm,1μm,2μm,5μm,10μm,20μm,40μm,60μm,80μm,100μm,120μm,160μm下的近红外光谱数据;
[0030](5)二维相关光谱分析:基于步骤3)所得样品的荧光光谱和步骤4)所得近红外光谱信息,使用2D shige软件将数据转换成适用于二维相关光谱分析的新光谱矩阵,利用Origin 9.0软件绘制同步荧光和红外光谱的同步/异步二维相关光谱。从图2可知,荧光的异步二维相关光谱提供了土壤胶体活性组分与镉结合反应的顺序关系。交叉峰(362,385)和(380,460)均呈正值,表明强度变化顺序为:362nm(类富里酸组分)>460nm(类腐殖酸组分)>280nm(类蛋白质组分)。从图3可知,在1048cm-1处由多糖的C-O引起的伸缩振动的峰值下降最为明显。利用顺序排列的规则,通过土壤纳米胶体结合镉后结构变化遵循下列顺序:多糖C-O>醚类>芳香νC=C,这说明土壤胶体与镉的亲水性结合位点多于疏水性位点。从图4可知,交叉峰(300nm,1048cm-1)和(410nm,1620cm-1)的峰值都为负。而在1040cm-1(多糖νC-O)和1620cm-1(苯环νC=C)和300nm交叉峰变化最显著,这表明土壤胶体的多糖组分和苯环类是的类富里酸成分中主要的荧光分子。这些荧光基团和表面官能团参与了土壤胶体和镉之间的相互作用。